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Abstract. The hydrodynamic interactions between two rotating tori is studied. Two kinds of problems are
addressed. The interaction between two force free tori is examined, for co and counter rotating cases, which
should be relevant in the case of swimming of two toroidal animals and form the basis for interaction of a
swarm of such swimmers, apart from the dynamics of a collection of stiff polymer rings. The second problem
is the case of two non-translating rotating tori, a possible configuration in toroidal mixers for microfluidic
devices. In the former case, analytical expression for translational velocity shows good agreement with the
theory in the far field case and show a strong reduction in the velocities in the lubrication limit for the co-
rotating case. The velocities are found to monotonically reduce to zero in the case of counter-rotating tori.
For the latter case, the expression for velocity field is derived the net force acting on the torus is analytically
calculated. The comparison with numerical results is encouraging both in the case of co as well as counter-
rotation. The expressions derived for velocities should be useful in estimating pseudo-potentials between
such pairs.

PACS. 47.85.Dh Hydrodynamics, hydraulics, hydrostatics

1 Introduction

Swimming at low Reynolds number has intrigued quite a
few researchers and several models have been suggested
in the last few decades to explain this interesting phe-
nomenon [1–6]. The reversibility of Stokes equations per-
mits only certain types of shape changes that are non-
reciprocal and break the time-reversal symmetry. Only
such sequence of configurations can make the animal move
and most suggested models in the literature take this into
account [4–6]. Purcell [3] in his famous article on life at
low Reynolds number, suggests a rotating torus which can
translate as a possible mechanism of motility of living or-
ganisms. The problem of a rotating torus is therefore im-
portant especially in understanding the movement of mi-
croorganisms and it would be interesting to examine the
interactions between several such swimmers. The other in-
stance where a rotating torus is encountered is the recently
proposed nanomachine [7,8] which is a DNA mini-plasmid,
set into rotations of the order of 1000 rad/s, by rectifying
thermal fluctuations, using the ratchet effect. This DNA
mini-plasmid can be looked upon as a rotating torus. The
flow around a torus, rotating about its centerline, is now
well understood [7–10]. A torus has coupled mobility (re-
sistance) matrix, which results in translational propulsion
on account of centerline rotation. The expression for mo-
bility matrix was recently derived [7–9] and the magni-
tude of the velocity of a self-propelled, force free swimmer
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Fig. 1. Hydrodynamic interaction of two tori.

was calculated. The slender torus analysis was extended
to “fat” tori, using the boundary integral method [9]. The
method was also used to determine the propulsion velocity
and “direction inversion” for the case of a torus moving
along a cylindrical rod, threading through the “hole” in
the torus [9].

An issue of great interest in such systems is the inter-
action between two rotating tori (Fig. 1). If the tori are
considered as models for biological organisms, the prob-
lem of interaction of two rotating tori would be important
and can reveal the possibility of driven assembly leading
to pattern formation in such systems [11], although multi-
particle interactions are known to be different than two
body interaction [12]. Recently, it was reported that two
vortex rings can show chaos [13]. Although the flow over
tori has been likened to flow due to vortex rings [14,15]
in irrotational flows, there are differences arising from the
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fact that the torus has a definite rigid boundary, essen-
tially at viscous Stokes flow conditions. There have been
few investigations on hydrodynamic interactions between
microorganisms, swimming at low Reynolds number. An-
alytical [16] and boundary integral methods [17,18] have
been used in the past to investigate the interaction be-
tween two spheroidal bodies (bacteria) with rotating he-
lical flagella. The computations, though, were limited to
two cases: swimming side by side and swimming along one
line. The minimum distance between the two spheroidal
bodies was taken to be approximately equal to the minor
axis of either spheroid, and lubrication effects were not ad-
dressed. More recently, there have been investigations [19]
to derive hydrodynamic model for bacterial colonies sus-
pended on agar plate. To model nutrient transfer and hy-
drodynamics, an ad-hoc interactive force between the mi-
croorganisms is often included, which in reality is unlikely
to exist. Numerical hydrodynamic models have been used
for two swimming organisms, the copepods for example,
which are significantly larger than single-celled ciliates or
flagellates, to calculate prey-encounter rates and other im-
portant quantities [20]. The behavior of such microorgan-
isms is very different when they are close together, the
analysis of which is mathematically difficult.

Recently, the hydrodynamic interaction of pairs of
swimming cells was studied [21]. The cells were modeled
as squirming sphere with prescribed tangential surface ve-
locity. These are referred as squirmers by the authors on
account of the mode of their motion. The center of mass
of the sphere can be displaced from the geometric center,
which is referred as bottom-heaviness. The interaction of
two squirmers was calculated analytically for the limits
of small (lubrication theory) and large separations (far
field solution), and numerically using boundary-element
method. A good match between analytical and numerical
results was found for the translational-rotational veloci-
ties and for the stresslet of two squirmers. The principal
results for two squirmers is that they first attract each
other, a result of far-field interaction. However, at small
separations, their orientation changes dramatically lead-
ing to separation.

The hydrodynamic interactions between two rotating
tori is studied. The aim of this work is to derive interac-
tions between two tori which can be used in the analysis
of a collection of such tori. Two kind of problems are ad-
dressed: force free and non-translating tori. The interac-
tion for force free motion of two tori should be relevant in
the case of swimming of two toroidal animals and form ba-
sis for interaction of a swarm of such swimmers, as well as
hydrodynamic interactions in dilute and semi-dilute poly-
meric solutions of semiflexible ring polymers.

The other problem is the case of two non-translating
rotating tori, which should be pertinent in possible toroid
like mixers in microfluidic devices. Analytical solutions for
these two cases, in the slender torus and far field limit,
are first derived for two configurations: co and counter-
rotating tori. The results are then extended to non-slender
tori and small separations (lubrication) using the bound-
ary integral method.
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Fig. 2. Coordinate system for the torus: local representation
in cylindrical coordinates for a single torus.

2 Analytical solution of a single rotating torus

Consider a torus with smaller diameter b and larger diam-
eter a, rotating about its centerline with an angular veloc-
ity ω in a Newtonian fluid, in the zero Reynolds number
limit (Fig. 2). In the analysis to follow, we indicate dimen-
sional quantities by a tilde. The governing equations for
the fluid are the Navier Stokes equations (continuity and
momentum),

∇̃ · ũ = 0 (1)

ρf

[
∂t̃ũ + ũ · ∇̃ũ

]
= −∇̃p̃+ µ∇̃2ũ (2)

where µ is the viscosity of the fluid. The physical quan-
tities are non-dimensionalized as follows: the lengths are
scaled by a, velocity with ωa, time by 1/ω, the stresses and
the pressure by µω. With this non-dimensionalization the
Navier Stokes equations are given by

∇ · u = 0 (3)

Re [∂tu + u · ∇u ] = −∇p+ ∇2u, (4)

where the ReynoldsRe = a2ρf/(µω). In this work, we con-
sider the limit of low Reynolds number, so that the Navier
Stokes equations reduce to the familiar Stokes equations

∇ · u = 0 (5)

−∇p+ ∇2u = 0. (6)

Here we use two coordinate systems (Fig. 2), the Carte-
sian (ex, ey, ez), and the cylindrical coordinate system
(ex, er, eθ). The unit vectors of the two coordinate sys-
tems are related by

ey = er cos θ + eθ sin θ (7)
ez = er sin θ − eθ cos θ. (8)

The solution for velocity can be expressed in terms of
fundamental solutions of Stokes flow like the rotlet, the
Stokeslet, the stresslet and the potential dipole [22,23].
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For a rotating torus about its centerline, we assume a uni-
form distribution of rotlets of strength mex × er acting
along the center line of the torus, m is a scalar and ex is
the unit vector in the direction of the axis of symmetry of
the torus. er is the unit vector joining the center line with
any point on the surface of torus and ex×er is tangent to
the circle at point ζ = aer [10]. The dominant singularity
representing the velocity field of a “self propelled rotat-
ing torus” is expected to be the rotlet. The effect of the
Stokeslet (force singularity) and the potential dipole (a
higher order singularity) is considered later. The velocity
in terms of the rotlet is then given by

u = m
ex × ζ × R

R3
. (9)

Any reference point in the fluid, can be represented
in cartesian coordinates (denoted with ()c) by X =
(x, r cos θ, r sin θ)c, while the centerline of the torus is
given by ζ̃ = (0, a cosφ, a sinφ)c. Here, θ is the azimuthal
angle in the cylindrical coordinate system for any refer-
ence point X in the fluid, while φ defines the azimuthal
angle subtended by the point rotlet ζ, acting along the
centerline. Choosing the unit-length a, the vector join-
ing the reference point and the centerline becomes R =
X − ζ = (x,

√
r2 + 1 − 2r cos (φ− θ), φ−θ)cyl with (...)cyl

denoting the the cylindrical coordinates with magnitude
R given by

√
r2 + x2 + 1 − 2r cos(φ− θ). The velocity at

point X generated by the distribution of the point rotlets
acting along the centerline can be obtained by integrating
over φ. The velocity components are

ux =
∫ 2π

0

dφ

[
m
a− r cos(φ− θ)

R3

]
(10)

ur =
∫ 2π

0

dφ

[
mx

cos(φ− θ)
R3

]
(11)

uθ =
∫ 2π

0

dφ

[
mx

sin(φ− θ)
R3

]
. (12)

Since the rotlet is a special case of the fundamental so-
lution which is identically annihilated by the Laplacian
∇2u = 0, the pressure due to the rotlet (Eq. (6)) is a
constant.

The angular component of the velocity is zero by sym-
metry. The velocities in equations (10) and (11) can be
integrated and easily expressed in terms of complete el-
liptic integrals E(k) and K(k) (Appendix A), where k is
defined as, k2 = 4r/

[
x2 + (r + 1)2

]
.

The velocities in terms of these elliptic functions are
given by (Appendix A),

ux =
m(I3 − rI4)

C3
(13)

ur =
mxI4
C3

with C =
√
x2 + (r + 1)2 and I3 and I4 elliptic integrals

given in Appendix A.
In our analysis we also consider external forces act-

ing on the torus, and analyze two additional singularities,

the potential dipole of strength dpx and the Stokeslet of
strength fx in the x direction. The velocity due to a ring
of point forces and point dipoles, distributed along the
centerline is now discussed. Consider the velocity due to
a Stokeslet of strength f which is given by

u =
(

I
R

+
RR
R3

)
· f . (14)

Here RR denotes the dyadic product, I is the identity
matrix and f is a point force vector. The pressure due to
a Stokeslet is given by

p =
2R · f
R3

. (15)

An axially symmetric situation is considered here, i.e.
a Stokeslet acting in the flow direction, x, and of con-
stant magnitude f so that f = fxex. The velocity is then
given by

u =
(

ex

R
+

Rx
R3

)
fx. (16)

Similarly as in the rotlet case , using R = X − ζ with mag-
nitude R =

√
x2 + (r + 1)2 − 4r cos2(φ/2), and integrat-

ing over the φ distribution of the ring of point Stokeslet,
we obtain

ux = f

∫ 2π

0

dφ

[
1
R

+
x2

R3

]
= fx

(
I1
C

+ x2 I3
C3

)
(17)

ur = fx

∫ 2π

0

dφ

[
r

R3
− cos(φ− θ)

R3

]
=
xfx(rI3 − I4)

C3

(18)

p = 2fx
∫ 2π

0

dφ

[
cos(φ − θ)

R3

]
=

2xfxI3
C3

. (19)

It is known that the Stokeslet and its higher derivatives
are solutions to Stokes equations [23]. Thus if G represents
a Stokeslet then ∇2G is also a solution to the Stokes equa-
tion and is called as the potential dipole. The velocity due
to a potential dipole can be easily derived as

u =
(

I
R3

− 3RR
R5

)
· d. (20)

Consider the distribution of potential dipoles along a ring,
acting in the x direction, such that d = dpxex, the x and
the r directional velocities are given by,

ux = dpx

∫ 2π

0

dφ

[
1
R3

− 3x2

R5

]
= fx

(
I3
C3

− 3x2I6
C5

)
(21)

ur = 3xdpx

∫ 2π

0

dφ

[
− r

R5
+

cos(φ − θ)
R5

]
(22)

= −3dpxx(rI6 − aI7)
C5

.
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Fig. 3. Local parameterization of the torus.

Note that there is no pressure contribution of the potential
dipole [23]. The net velocity can be written as

ux =
m

C3
(I3 − rI4) + dpx

(
I3
C3

− 3x2 I6
C5

)

+ fx

(
I1
C

+ x2 I3
C3

)
(23)

ur =
mxI4
C3

− 3dpxx

C5
(rI6 − I7) +

xfx

C3
(rI3 − I4)

p =
2fxxI3
C3

(24)

where p is the pressure and has contribution only from
the Stokeslet. For a torus rotating with angular velocity
ω and translating with velocity Ux the boundary condi-
tions are ũx = ω(a− r̃) + Ũx and ũr = ωx̃ at the surface
of the torus. The non-dimensional boundary conditions
thus become ux = (1 − r) + Ux and ur = x. In the spe-
cial case of an immobile torus, we set Ux = 0. Further,
the case of a slender torus (the ratio of the two radii of
the torus, ε = b/a is small) is considered here, and the
surface is locally parameterized by an angle ψ, such that
x = cosψ and r = 1 + ε sinψ (Fig. 3). This implies the
expansion k2 = 1− ε2

4 +O( ε)3 in the slender torus limit.
The asymptotic expressions for the elliptic integrals in the
k = 1 limit (Appendix A) can therefore be used to sim-
plify the expressions. The boundary conditions demand
a scaling , m = m0 ε

2, dpx = ε4dpx0 and fx = ε2fx0.
The boundary conditions are x and r directional no slip
velocity conditions respectively.

Ux− ε sinψ = −2 εmo sinψ− ε2(mo+4dpxo−2fxo)
2

cos 2ψ

+
ε2

2

(
2mo

(
log

8
ε
− 1

2

)
+ 4fxo

(
log

8
ε

+
1
2

))
(25)

R

y

z

ζ
X

f
Stokeslet

2 b

2 a
d

Fig. 4. Coordinate system for interaction of two torus.

ε cosψ = 2 εmo cosψ − ε2(mo + 4dpxo − 2fxo)
2

sin 2ψ.

(26)
At O( ε), we get the strength of the rotlet as mo = 1

2
which is the central result of [10].

Equations (25) and (26) can be solved in two situa-
tions: a force free torus and a stationary torus and these
are discussed in the Appendix B.

3 Hydrodynamic interaction between two tori

Consider the hydrodynamic interaction of two tori (Fig. 4)
separated axially by a distance d. To calculate the interac-
tion, it is necessary to specify either the force and torque
on the surface of the torus (the mobility problem) and
calculate the velocities of the two tori. Alternatively, one
can prescribe the translational and angular velocity of the
two tori (resistance problem) and calculate the additional
force and torque required to maintain those velocities as
a result of hydrodynamic interaction.

3.1 Force-free tori

The “mobility problem” which is relevant in hydrody-
namic interaction in a collection of self-propelled animals
is first addressed. The two tori remain force free in the x
direction, but are allowed to move with a constant angular
velocity ω. The additional torque exerted is absorbed by
the tori. The free draining velocity of the rotating tori can
then be given by the imposed velocity of the second torus
acting on the first torus and vice versa. In addition to this
the tori travel at their own self propelled velocity given by
the expression (53). Consider the first torus, whose veloc-
ity is given by equation (23). This becomes the ambient
velocity field for the second torus, such that,

u∞x =
m

C3
(I3 − rI4) + dx

p

(
I3
C3

− 3x2 I6
C5

)
(27)

u∞r =
mxI4
C3

− 3dx
px

C5
(rI6 − I7) (28)
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is evaluated at x̃ = d + a cosψ and r̃ = a + b sinψ,
which correspond to the non-dimensional positions, x =
δ + cosψ, and r = 1 + ε sinψ. Here the non-dimensional
separation between the two tori is given by δ = d/a.
This in the far field limit δ → ∞, means k is O(1/δ)2
and the asymptotic expressions for the elliptic integrals
around k = 0 can now be used (Appendix A). Substi-
tuting mo = 1/2 and dpxo = −1/8, corresponding to the
solution for a single force free torus, the velocity at the
center of the torus is given by x→ δ and r → 1

ux∞ = πε2
(

(11 + 2δ2)
2(4 + δ2)5/2

)
(29)

ur∞ = πε2
(

2πε2(15 + 2δ2)
4δ(4 + δ2)5/2

)
. (30)

In the far field limit, the net translational velocity of the
tori is therefore given by,

Ux =
ε2

2

(
log

8
ε
− 1

2

)
± πε2

(
(11 + 2δ2)

2(4 + δ2)5/2

)
(31)

for co and counter-rotating tori respectively.

3.2 Non-translating tori

3.2.1 Force acting on the tori

We now consider the resistance problem. The expres-
sion for the velocity of a non-translating rotating torus
is dervied in the Appendix B and is given by

ux =
m

C3
(I3 − rI4) + dpx

(
I3
C3

− 3x2 I6
C5

)

+ fx

(
I1
C

+ x2 I3
C3

)
(32)

ur =
mxI4
C3

− 3dpxx

C5
(rI6 − I7) +

xfx

C3
(rI3 − I4) (33)

involving a rotlet, a dipole and a Stokeslet. The solution
for a non-translating, rotating, single torus is given by,

m0 =
1
2

fxo = − ε2

4

[
ln(8/ ε) − 1/2
ln(8/ ε) + 1/2

]

dpxo = −1
4

log 8
ε

log 8
ε + 1

2

. (34)

The hydrodynamic interaction of two such tori , rotat-
ing and not translating, can be calculated in the far field
approximation to the lowest order as follows: at the ze-
roth order, the velocities of the two tori are the expres-
sion 32, 33. The first order hydrodynamic interaction can
be obtained by requiring that the reflected fields satisfy
no-slip condition. This leads to estimation of the force ex-
erted on a torus which is immersed in the velocity u∞ pro-
duced by the rotation of the other torus. Therefore, if we

consider the first torus, whose velocity is given by equa-
tions (32) and (33). This becomes the ambient velocity
field for the second torus, evaluated at x̃ = d+a cosψ and
r̃ = a+ b sinψ, which correspond to the non-dimensional
positions, x = δ+cosψ, and r = 1+ ε sinψ. Here the non-
dimensional separation between the two tori is δ = d/a.
This in the far field limit δ → ∞, means k is O(1/δ)2
and the asymptotic expressions for the elliptic integrals
around k = 0 can now be used (Appendix A).

The x directional velocity at the center of the torus in
the x→ δ and r → 1 limit is,

ux∞ =
πε2

4

(
89 + 36δ2 + 4δ4−2(45 + 4δ2(7 + δ2)) log 8

ε

(4 + δ2)5/2(1 + 2 log 8
ε )

)

(35)

and the non-dimensional force on the torus is given by

F = 4π2ε2
(log 8/ε− 1/2)
(log 8/ε+ 1/2)

∓ 8π2 ux∞
(log 8/ε+ 1/2)

. (36)

The first term in equation (36) is the force required to
keep a rotating torus stationary. The second term is the
additional force due to hydrodynamic interaction in the
co and counter-rotating case.

3.2.2 Velocity field for two non-translating tori

We now seek the velocity profile at any point in the fluid
for a system of two tori non-translating and rotating in co
or counterwise fashion. The disturbance velocity which we
indicate by a tilde is assumed to consist of a distribution
of rotlet, stresslet and potential dipoles along the center
line in both x and the r direction.

The velocity field is then given by

ũi = f̃jGij + d̃jDij + t̃jRij + SjkΨijk (37)

where the fundamental solutions have following defini-
tions:

Gij =
δij
R

+
xixj

R3
(38)

Dij =
δij
R

− 3xixj

R3

Ψijk =
xiδjk

R3
− 3xixjxk

R5
Rij .

Rij is a rotlet as defined earlier. With f̃ = fx ex +
fr cosφ ey+fr sinφ ez, d̃ = dx ex+dr cosφ ey+dr sinφ ez

represent the Stokeslet and dipole strength. The rotlet is
constructed in the same manner as for the case of a single
torus, and the stresslet strength is defined as:

⎛
⎝

sxx sxr cos θ sxr sin θ
sxr cos θ srr cos2 θ srr sin θ cos θ
sxr sin θ srr sin θ cos θ srr sin2 θ

⎞
⎠ .
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Incompressibility demands that srr = −sxx and the
stresslet is therefore symmetric traceless. The velocity can
then be written as follows:

ux =
m

C3
(I3 − rI4) + f̃x

(
I1
C

+ x2 I3
C3

)

+ d̃x

(
I3
C3

− 3x2 I6
C5

)
+
f̃ r

C5
(−I3 + rI4)

− d̃r3x
C5

(−I6 + rI7) +
1
C5

(3xsxr(xI6 − rxI7))

+
1
C5

(
3xsxx(I6 − 2rI7 − x2I6 + r2I8)

)
(39)

ur =
mxI4
C3

+
f̃x

C3
(rI3 − I4) − d̃x3x

C5
(rI6 − I7)

+ f̃ r

(
I2
C

− rI3 − rI5 + (r2 + 1)I4
C3

)

+ d̃r

(
I4
C

+
3rI6 − 3(r2 + 1)I7 + 3rI8

C5

)

− 3sxr

((
(x+ r2x)I3 − rx

)
C3

− rx
I2
C

)

− 3sxx

C5
(I7 − rI6 − 2rI8 + r2I9 − r3I8 + rx2I6

+ (2r2 − x2)I7). (40)

In the above expressions, the elliptic integrals are evalu-
ated using the asymptotic expansion around k = 1, given
in the Appendix A.

The strength of the rotlet, Stokeslet and dipole are ob-
tained by applying the boundary conditions on the surface
of the torus, that is at x = cos θ, r = 1+ ε sin θ, such that,

−ũ∞i = ũi (41)

−
∫ 2π

0

dθ(x × ũ∞i ) =
∫ 2π

0

dθ(x × ũi). (42)

The boundary condition (41) gives the strength of the
Stokeslet and the potential dipole in the two directions x
and r. The boundary condition (42) gives the strength of
the rotlet. The value of the stresslet is obtained by taking
the dyadic product of the velocity with the lever arm, and
equating the symmetric part of the corresponding matrix.

−
∫ 2π

0

dθ(xiũ
∞
j ) =

∫ 2π

0

dθ(xiũj) (43)

The expression for the strengths of different singularities
is calculated as:

f̃x =
π(1 − 2 log 8

ε )
δ(1 + 2 log 8

ε )2
(44)

f̃ r =
π(1 − 2 log 8

ε )
2δ2(−5 + 2 log 8

ε )(1 + 2 log 8
ε )

m̃ = −π(−4 + 6 log 8
ε + 4 log 8 log 8

ε2 + 4(log ε)2

4δ(1 + 2 log 8
ε )2

)

s̃xxo =
π

24δ2

(
15 +

4
−5 + 2 log 8

ε

− 28
1 + 2 log 8

ε

)

s̃ppo = −π 1 − 72(log 2)2 + log 64 + 2(−1 + 4 log 64
ε ) log ε

2δ(1 + 2 log 8
ε )2

with the dipole strengths given by

d̃x =
b2

2
f̃x,

d̃r =
b2

2
f̃ r. (45)

4 The boundary integral method

The results in the slender limit are practically useful, es-
pecially, in the case of polymer rings and miniplasmids. It
would, however, be interesting to extend the results to the
case in which the torus thickness is of the same order as
the internal radius. For the motion of such a non-slender
torus it is necessary to revert to some kind of numerical
method. Here we use the boundary integral method which
is a singularity method and is best suited to solve Stokes
equations. The drag calculation (resistance problem) in-
volves solving integral equation of the first kind, which are
known to generate ill conditioned matrices [22], although
converged non-oscillatory solutions are reported in cer-
tain specific cases [24]. For force calculation in the torus,
we do get well behaved converged solutions which are in
good agreement with the analytical solution in the slender
torus limit. The calculations are then extended to the non-
slender limit. In fact, the analytical expressions reported
in Section 4 are multipole expansions of the complete in-
tegral equation, for force distribution, which can be solved
numerically using the boundary integral method [23]. Note
that multipole expansions are different moments of the
Stokeslet about the centerline of the torus [23].

The representation of the velocity by the boundary
integral equation can be written as

ui(x0) = − 1
8πµ

∫
dS(x)Gij(x,x0)

+
1
8π

∫
dS(x)uj(x)Tijk(x,x0)nk(x) (46)

where Gij(x,x0) =
(

δij

r + xixj

r3

)
and Tijk(x,x0) = xixjxk

r5

where r = |x−x0| , S(x) is the surface area of the two bod-
ies (tori) over which integration is carried out and nk is
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the local unit outward normal to the surface. The equation
is derived in Appendix C [9,22]. We make use of the ax-
isymmetry in the problem, akin to the analytical solution
discussed in the earlier section. The Greens functions are
modified after integration in the azimuthal direction and
are provided in several references [22,23]. These are ex-
pressed in terms of elliptic integrals of the first and second
kind. In the above equation ui(x) is known and is given by
(Ux + (1 − r), x). The integrals are solved by discretizing
the arc length into numerous elements and interpolating
using cubic splines. The Greens function exhibit − log r
singularity as r → 0 that is x → x0. The singularity is
handled in the usual way [22] by subtracting the singular
part from the Greens functions and carefully integrating
it analytically. The force, velocity, arc length and all other
variables are also expressed as cubic splines. The condition
of no net x directional force (force free torus) is enforced
to get the unknown longitudinal translational velocity for
both the tori. The comparison of the asymptotic and nu-
merical solutions are discussed in the following section. In
far field simulations reported in this work, we have used
80 elements for discretization. In the lubrication limit, the
number of elements was increased to as high as 400. In
all the cases, the results were confirmed by doubling the
number of elements and the tolerance was set at less than
0.1%. The code was also confirmed with analytical results
in the far-field limit as well as by ensuring that Stokes
reversibility namely, zero relative velocity in the case of
co-rotating tori and equal and opposite absolute velocity
in the case of counter-rotating tori is obeyed. In the non-
translating case the theoretical expectation of equal force
on the two tori was confirmed through simulations.

5 Results and discussion

The interaction between two co and counter-rotating tori
is studied for two cases: force-free and non-translating
tori. Analytical solutions are derived using singularity
method as discussed in Section 3 and the boundary inte-
gral method was used to extrapolate beyond the analytical
limits.

5.1 Force-free tori

Tori are the best prototypes for self propelled particles
and the interaction is important in understanding pro-
cesses like bio-convection in such systems. We consider
here, the interaction between two co and counter- rotat-
ing tori which are force free and self propelled. This is
valid especially for low Reynolds number swimmers, as
also for the hydrodynamic interaction between stiff poly-
mer rings [9]. The analytical expressions for the case of co
and counter-rotating tori are given by 31. In the bound-
ary integral method for this case, the net force of the two
tori is independently set to zero to determine the unknown
translational velocities. The magnitude of translational ve-
locity is found to be the same for the two tori. Infact, this
was used to check the accuracy of the numerical method.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

Separation 

N
or

m
al

iz
ed

 v
el

oc
ity

(a) 

(b) 

(c) 

Fig. 5. Comparison of the analytical ( ) and numerical
( ) results for non-dimensional translational velocity ver-
sus separation for co-rotating tori (a) ε = 0.01, (b) ε = 0.05
and (c) ε = 0.25.

While the relative velocity is zero for the co-rotating case,
it is twice the absolute velocity in the case of counter-
rotating tori.

5.1.1 Co-rotating tori

Figure 5 shows the comparison between the analytical
and numerical non-dimensional velocity U = U∗

Ut
where

Ut = ε2

2 (log 8
ε − 1

2 ), with the non-dimensional separation
δ = d̃/a. Ut is the non-dimensional free-stream velocity of
a single torus rotating with angular velocity ω. The fig-
ure illustrates that the comparison between the analytical
and the numerical results is fairly good for separation as
low as δ = 1, especially for the case of slender tori with
ε = 0.01, 0.05. The deviation for ε = 0.25 though, is sub-
stantial. Figure 6 shows the comparison between the nor-
malized translational velocities of the tori for three slen-
derness ratios. In the far field δ → ∞, the normalized
velocity U → 1, since the velocity is normalized by Ut. It
is seen that the translational velocity increases as the sep-
aration decreases, in accordance with the theory, and with
a value larger than unity indicating reinforcement of veloc-
ity (Fig. 8a). However, at small separations, a sharp fall in
the absolute velocity is observed. The descent is more dra-
matic for slender tori. The velocities scale logrithmically in
the lubrication limit (Fig. 7). In all the simulations carried
out, the Stokes law reversibility is obeyed and the relative
velocity of the two tori is zero. The sharp reduction in
the absolute velocity is an indication of “slow down” of
the tori, and disappearance of hydrodynamic interaction,
an effect which is observed in the case of counter-rotating
tori as well, and a result of strong non-linearity. Since the
torus slenderness ε, the non- dimensional thickness of the
torus, is the only length scale relevant in this case, we find
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Fig. 6. Comparison of the numerical results for non-
dimensional translational velocity versus separation for co-
rotating tori ( ε = 0.01, ε = 0.05, · · ε = 0.25).
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Fig. 7. Comparison of the numerical results for non-
dimensional translational velocity versus separation for co-
rotating tori in the lubrication limit ( ε = 0.01,
ε = 0.05, · · ε = 0.25).

that the sharp decrease in the velocity in the co-rotating
case occurs at separations of the same orders as the torus
diameter.

5.1.2 Counter-rotating tori

The relative velocity of two counter-rotating tori is non-
zero, infact it is equal to twice the absolute velocity of each
of the tori. Figure 9 shows the variation of the velocity
of the tori with separation for three different slenderness
ratios. The agreement between the numerical and the an-
alytical results improves with the slenderness ratio ε. The
reason for the drop in the velocity for counter-rotating tori

a b

Fig. 8. Schematics of reinforcement and annihilation of veloc-
ities in the co and counter rotating cases: solid arrow is for the
single torus velocity while the dashed arrow indicates correc-
tion
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Fig. 9. Comparison of the analytical ( ) and numerical (· · · )
results for non-dimensional translational velocity versus sepa-
ration for counter-rotating tori (a) ε = 0.01, (b) ε = 0.05 and
(c) ε = 0.25.

can be understood from Figure 8b. Figure 10 shows the
numerical results for the variation of translational velocity
as a function of the separation. The velocity approaches
zero at non-zero separations and hints at possible slow-
down and aggregation in a collection of tori. The drastic
slowdown can be attributed to strong lubrication and non-
linear interaction.

5.2 Interaction between stationary tori

Non-translatory, rotating tori can be potentially used in
microfluidic devices for pumping fluids. They may also
be encountered in constrained polymer dynamics of mini-
plasmids and stiff rings. The analytical expression for the
force in the case of co and counter-rotating tori is given by
equation (36). In the boundary integral method for this
case, the net force is directly calculated by the solving the
integral equation (46) and imposing the rotational velocity
on the surface. The translational velocity is maintained at
zero. The magnitude of the x directional force is equal in
magnitude for the two tori. This was used to check the ac-
curacy of the numerical method. While the force is equal
and opposite for the co-rotating case, it is equal and in
the same direction for the case of counter-rotating tori.
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Fig. 10. Comparison of the numerical results for non-
dimensional translational velocity versus separation for
counter-rotating tori ( ε = 0.01, ε = 0.05, · ·
ε = 0.25).
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Fig. 11. Comparison of the analytical ( ) and numerical
( ) results for non-dimensional force versus separation for
co-rotating tori (a) ε = 0.01, (b) ε = 0.05 and (c) ε = 0.25.

5.2.1 Co-rotating tori

Figure 11 shows the variation of the total force acting
upon the tori with separation in the case of co-rotating
configuration. The total normalized force shows close
match with analytical theory for separations of the or-
der of δ = 10 for all the three slenderness ratios, although
the agreement improves considerably with decreasing ε.
This can be compared with the force free case in which
the analytical and numerical results agree reasonably at
separations as low as δ = 2. In general, the good agree-
ment between the analytical and the numerical results can
be attributed to the O(ε2) variation of both the mean and
the perturbation quantities.
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Fig. 12. Comparison of the numerical results for non-
dimensional force versus separation for co-rotating tori in the
lubrication limit ( ε = 0.01, ε = 0.05, · · ε = 0.25).

The force acting on the two tori is equal, and lesser
than that acting on the tori in the absence of the other.
This can be attributed to the opposite direction of force
in this configuration, resulting in the value of normalized
force being less than unity. The numerical values of the
normalized force is shown in Figure 12 for three different
slenderness ratios and a qualitative change in the nature
of the curve is observed at larger values of ε, especially at
small separations. Interestingly, it is observed that there
is a finite force even at very low separations and that the
hydrodynamic interactions never really cancel each other.

5.2.2 Counter-rotating tori

For the case of counter-rotating tori, a similar behavior is
observed (Fig. 13). The force on the tori increases with
decrease in separation, since the force on a single torus
and the force because of hydrodynamic interaction act in
the same direction. The numerical and analytical values
are found to match for even smaller values of separation
than the co-rotating cases (Fig. 13). Figure 14 shows the
variation of force (numerical) with separation and the di-
vergence in force with slenderness ratio, is found to be
larger than the co-rotating case, especially at small sep-
arations. The results obtained in the co and the counter-
rotating cases can be easily explained from the schematics
(Fig. 15).

It should be mentioned that although the present work
deals with axi-symmetric interaction between tori, non-
axisymmetry can have dramatic effects on the system. In-
fact, the recent work by Pedley on squrimers [11] consider
three dimensional orientation of the squirmers and find
interesting near and far field dynamics that include at-
traction and change of orientation.

In the non-axisymmetric case, the velocity field expe-
rienced by a swimmer on account of the motion of another
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Fig. 13. Comparison of the analytical ( ) and numerical
( ) results for non-dimensional force versus separation for
co-rotating tori (a) ε = 0.01, (b) ε = 0.05 and (c) ε = 0.25.
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Fig. 14. Comparison of the numerical results for non-
dimensional force versus separation for co-rotating tori in the
lubrication limit ( ε = 0.01, ε = 0.05, · · ε = 0.25).

swimmer would have substantial shear, rotational and ex-
tensional components. Certain configurations can there-
fore lead to instabilities, setting the tori into rolling (if
the tori lie in the same plane and their axes of symmetry
parallel) or tumbling dynamics (if their axes of symmetry
are perpendicular to each other) as the case may be. How-
ever, for small deviations from axisymmetry, and regimes
in which such instability is not set in (small deviation of
the axes of symmetry of the two tori), one may safely as-
sume that there can be orientational order on account of
the relative motion, leading ultimately to an axisymmet-
ric configuration which is considered in the present case.
These instabilities are known in vesicles and in biological
systems like locomotion of ecoli [21,25,26].

a b

Fig. 15. Schematics of reinforcement and annihilation of forces
in the co and counter rotating cases: solid arrow is for the single
torus velocity while the dashed arrow indicates correction.

6 Conclusions

The hitherto unaddressed problem of interaction between
two rotating tori is considered. These are best prototypes
for self propelled particles and the interaction is important
in understanding processes like bio-convection in such sys-
tems. The analysis is carried out for the case of co and
counter-rotating tori. Two different instances are consid-
ered. Firstly, the interaction between two force-free tori
is examined. For the co-rotating case the analysis indi-
cates a strongly interacting regime with sharp reduction
in the velocity indicating plausible attraction. In counter-
rotation, the velocity tends to zero at a separation, which
is dependent on the slenderness ratio. This raises the pos-
sibility of driven-assembly patterns in ensembles of such
animals. The second problem investigated here, is estima-
tion of the forces exerted on co and counter-rotating tori
which do not translate. It is found that the force increases
with separation for the case of co-rotating tori whereas
for counter-rotation, the force decreases with distance.
These results should be useful to study bio-convection pat-
terns in a collection of rotating animals, and estimates
of the shear stress exerted on such animals. The study
should also prove useful in the hydrodynamic interaction
between polymer molecules in a concentrated solution of
miniplasmids or other stiff and semi-flexible polymers and
in toroidal mixers in microfluidic devices.

The author thanks Igor Kulic and Helmut Schiessel for several
useful discussions.

Appendix A: Elliptic Integrals

The complete elliptic integrals are defined as [27]:

F (k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

(47)

E(k) =
∫ π/2

0

dθ
√

1 − k2 sin2 θ. (48)

The elliptic integrals have the following asymptotic ex-
pansion around k = 1,

F (k) =
1
2

ln
(

16
1 − k2

)
(49)

E(k) = 1 +
1 − k2

2

(
ln

16
1 − k2

− 1
2

)
(50)
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and around k = 0, the asymptotic expression reads

F (k) =
π

2
+
π

8
k2 +

9πk4

128
(51)

E(k) =
π

2
− π

8
k2 − 3πk4

128
. (52)

I1 =
∫ 2π

0

dθ√
1 − k cos2 θ/2

= 4F (k)

I2 =
∫ 2π

0

cos θ√
1 − k cos2 θ/2

dθ =
4
k

((2 − k)F (k) − 2E(k))

I3 =
∫ 2π

0

dθ
3
√

1 − k cos2 θ/2
=

4
1 − k

E(k)

I4 =
∫ 2π

0

cos θ
3
√

1 − k cos2 θ/2
dθ =

4
k

(
2 − k

1 − k
E(k) − 2F (k)

)

I5 =
∫ 2π

0

cos2 θ
3
√

1 − k cos2 θ/2
dθ

=
4
k2

(
k2 − 8k + 8

1 − k
E(k) − 4(2 − k)F (k)

)

I6 =
∫ 2π

0

dθ
5
√

1 − k cos2 θ/2

=
4

3(1 − k)

(
2

1 − k
(2 − k)E(k) − F (k)

)

I7 =
∫ 2π

0

cos θ
5
√

1 − k cos2 θ/2
dθ

=
4

3k(1 − k)

(
2

1 − k
(1 − k + k2)E(k) − (2 − k)F (k)

)

I8 =
∫ 2π

0

cos2 θ
5
√

1 − k cos2 θ/2
dθ =

4
3k2(1 − k)

×
(
(8 − 8k − k2)F (k) − 2(2 − k)(2 − 2k − k2)

1 − k
E(k)

)

I9 =
∫ 2π

0

cos3 θ
5
√

1 − k cos2 θ/2
dθ

=
4

3k3(1 − k)

(
2

2 − k
(k4 + k3 − 33k2 + 64k − 32)E(k)

)

+
4

3k3(1 − k)
(−(2 − k)(k2 + 32k − 32)F (k)

)
.

Appendix B: Calculations for a single torus

Velocity of a force free rotating torus

The velocity of a force free torus is obtained by substitut-
ing fxo = 0 in equations (25) and (26). The strength of the
dipole can be obtained from equation 26 as dpxo = − 1

8 .
Equation (25) indicates that the x velocity is given by

Ux =
ε2

2

(
log

8
ε
− 1

2

)
. (53)

This is the nondimensional translational velocity of a
freely rotating torus. The dimensional velocity of a ro-
tating torus with an angular velocity ω can therefore be
given by

Ũx =
ωb2

2a

(
log

8a
b

− 1
2

)
. (54)

Calculation of force on a non-translating torus

To calculate the velocity field due to a rotating torus,
prevented from translating by an external force, con-
sider equations (25) and (26). Here mo = 1

2 satisfies
the O( ε) equation. At O( ε2), the quantities dependent
on the angular parts can be balanced appropriately by
dpxo = 2fxo−mo

4 . The Stokeslet strength fxo can be calcu-
lated by equating the translational velocity to zero, and
the strength of the Stokeslet can now be easily deter-
mined as

fx = − ε2

4

[
ln(8/ ε) − 1/2
ln(8/ ε) + 1/2

]
. (55)

The strength of the potential dipole is then given by

dpxo = −1
4

log 8
ε

log 8
ε + 1

2

. (56)

The local stress tensor can be expressed as T =
[(σxx, σxr), (σrxσrr)], where different elements of the stress
tensor have following definitions:

σxx = −p+ 2
dux

dx
(57)

σxr = σrx =
dux

dr
+
dur

dx
(58)

σrr = −p+ 2
dur

dr
. (59)

The traction vector (force per unit area) is t = T · n, and
its value in the x direction is given by ex ·T · n, where n
is the unit normal given by (cosψ, sinψ). The net force
on the torus is then calculated by integrating the traction
over the area of the torus given by

∫
dψ(1 + ε sinψ)2π ε.

Thus the net x directional non-dimensional force is given
by

Fx =
∫ 2π

0

dψ(1 + ε sinψ)2π εtx = 4π2 ε2
ln(8/ ε) − 1/2
ln(8/ ε) + 1/2

(60)
and the dimensional force by

F̃x = 4π2µb2
ln(8/ ε) − 1/2
ln(8/ ε) + 1/2

. (61)
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Appendix C: Derivation of boundary integral
equation

The basic equation for velocity at a point in flow over a
particle, when the point lies outside the particle is given by

ui(x0) = − 1
8πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
8π

∫
dS(x)uj(x)Tijk(x,x0)nk(x). (62)

The first integral is called as single layer potential, whereas
the second is called the double layer potential. When the
singular point is moved on to the surface, the equation is
modified as

ui(x0) = − 1
4πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
4π

∫
dS(x)uj(x)Tijk(x,x0)nk(x). (63)

The singularity in the double layer potential can be elim-
inated by re-writing the equation as

ui(x0) = − 1
4πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
4π

∫
dS(x)(uj(x) − uj(x0))Tijk(x,x0)nk(x)

+ uj(x0)
1
4π

∫
dS(x)Tijk(x,x0)nk(x). (64)

Using the property of double layer potential,
∫
dS(x)Tijk(x,x0)nk(x) = −4πδij (65)

the governing equation can be re-written as

ui(x0) = − 1
8πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
8π

∫
dS(x)(uj(x) − uj(x0))Tijk(x,x0)nk(x). (66)

In the present work, it was found that the contribution of
the second integral increases as the slenderness ration ε in-
creases. This is understandable as the assumption of rigid
body approximation becomes more invalid with ε. How-
ever, the absolute contribution of the second integral was
found to be minimal and results were affected by around

1% (if the second integral was neglected) even in the case
of a torus of thickness ε = 0.8. The change was less than
0.1% for slender tori (ε < 0.05)
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